学术报告(一)
报告人:吴泉水
报告题目:Filtered Quantization, Skew Calabi-Yau algebras and Poisson algebras
报告时间:2020年12月6日8:00
报告地点:文彬楼509
报告摘要:If A is a filtered algebra such that the associated graded algebra gr(A) is commutative Calabi-Yau, then A is in general skew Calabi-Yau. In this case, gr(A) has a canonical Poisson structure with a modular derivation. We describe the connection between the Nakayama automorphism of A and the modular derivation of gr(A) by using homological determinants. I will start from the definitions of (skew) Calabi-Yau algebras and homological determinants of (Hopf) actions on them. Some applications will also be given in the talk. This talk is based on a joint work with Ruipeng Zhu.
报告人简介:吴泉水,复旦大学数学科学学院教授、博士生导师、上海数学中心执行主任。1987获复旦大学博士学位。主要从事非交换代数/几何的研究。在国内外学术刊物,包括Duke Math. J. Trans. AMS和J. Nocomm. Geometry等, 发表学术论文50余篇,曾解决所在领域的几个公开问题和猜想。曾获上海市优秀学术带头人称号,宝钢优秀教师奖、教育部全国高校青年教师奖、国家教委霍英东教育基金会青年教师奖。担任教育部高等学校数学类专业教学指导委员会副主任委员;国家教材委员会数学专家委员会委员。国家教委科技进步二等奖。担任学术期刊《Communications in Algebra》、《ERA》等杂志编委。
学术报告(二)
报告人:胡乃红
报告题目:Double-bosonization and Majid's Conjecture, (II): irregular $R$-matrices and type-crossing to $G_2$
报告时间:2020年12月6日9:00
报告地点:文彬楼509
报告摘要:We build up the related theory of weakly quasi-triangular dual pairs suitably for non-standard $R$-matrices (irregular), and establish the generalized double-bosonization construction for irregular $R$, which generalizes Majid's results for regular $R$'s in \cite{majid1}. As an application, the type-crossing construction for the exceptional quantum group of type $G_{2}$ is given explicitly. This affirms Majid's expectation that the tree structure of nodes diagram associated with quantum groups can be grown out of the node corresponding to $U_q(\mathfrak{sl}_2)$ by the (generalized) double-bosonization procedures. This is a joint work with Hongmei Hu
报告人简介:华东师范大学数学科学学院教授,博士生导师,德国洪堡学者,现任华东师大中法基础数学联合实验室LIA执行主任;历任数学系副系主任。从事李理论、量子群及Hopf代数结构与表示论研究,已在国际学术刊物发表论文近60篇。曾获得教育部霍英东青年教师奖(研究类)二等奖,第三届教育部优秀教师教学科研奖励计划暨教育部青年教师奖,上海市启明星计划和追踪计划。多次主持国家自然科学基金面上项目,教育部博士点基金项目,两次参与国家自然科学基金重点项目,并与美国北卡州立大学景乃桓教授合作,获得国家自然科学基金海外优秀青年合作研究基金(即杰出青年基金B类)支持。培养毕业博士18人, 2人获全国百篇优秀博士论文提名奖,3人获上海市优秀博士论文成果奖,3人获国家博士研究生奖学金。
学术报告(三)
报告人:陈惠香
报告题目:Representations of Hopf-Ore extensions of group algebras
报告时间:2020年12月6日10:00
报告地点:文彬楼509
报告摘要:We study finite-dimensional representations of Hopf-Ore extensions $kG(\chi^{-1}, a, 0)$ of group algebras $kG$. The finite dimensional simple modules and indecomposable modules over $kG(\chi^{-1}, a, 0)$ are classified. As an application, we describe the structures of Grothendieck ring and Green ring of the Hopf-Ore extension of the group algebra $kD_n$ of the dihedral group $D_n$. This is a joint work with Hua Sun and Yinhuo Zhang.
报告人简介:扬州大学数学科学学院教授、博士生导师。复旦大学博士,德国亚深工业大学博士后,主要从事Hopf代数、量子群及其表示理论的研究,在Journal of Algebra、Journal of Pure and Applied Algebra、Communication in Algebra等国际重要杂志发表论文多篇,先后多次应邀到日本、德国、新加坡、比利时、新西兰等国进行学术交流访问,主持国家自然科学基金面上项目5项。